Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Viruses ; 16(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38400033

RESUMO

Fire blight, caused by Erwinia amylovora, is a devastating bacterial disease that threatens apple and pear production. It is mainly controlled by using antibiotics, such as streptomycin. Due to development of E. amylovora resistant strains and the excessive agricultural use of antibiotics, there is an increased awareness of the possibility of antibiotic resistance gene transfer to other microbes. Urgent development of biocontrol agents (BCAs) is needed that can be incorporated into integrated pest management programs as antibiotic alternatives. A novel phage-carrier system (PCS) that combines an antagonistic bacterium, Pantoea agglomerans, with its ability to act as a phage-carrier bacterium for Erwinia phages has been developed. The low viability of P. agglomerans cells following spray-drying (SD) has been a challenge for the industrial-scale production of this PCS. Here, an SD protocol was developed for P. agglomerans by modifying the growth medium and bacterial cell formulation using D(+)-trehalose and maltodextrin. The developed protocol is amenable to the industrial-scale production of the BCA/PCS. The P. agglomerans viability was greater than 90% after SD and had a shelf life at 4 °C of 4 months, and reconstituted cells showed a 3 log reduction in E. amylovora counts with a pear disc assay.


Assuntos
Bacteriófagos , Erwinia amylovora , Malus , Pantoea , Bacteriófagos/genética , Antibacterianos/farmacologia , Erwinia amylovora/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
3.
Phytopathology ; 113(12): 2222-2229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856693

RESUMO

Several fire blight resistance loci in Malus genotypes map on different linkage groups (LGs) representing chromosomes of the domesticated apple. Prior genetics studies primarily focused on F1 populations. A strong resistance quantitative trait locus (QTL) explained up to 66% of phenotypic variance in an F1 progeny derived from crossing the highly resistant wild apple genotype Malus fusca MAL0045 and the highly susceptible apple cultivar 'Idared', which was previously mapped on LG10 (Mfu10) of MAL0045. Strains of the causative bacterial pathogen Erwinia amylovora, notably those that show a single nucleotide polymorphism in the avrRpt2EA effector protein sequence at position 156 (e.g., Ea3049), are more virulent and overcome some known fire blight resistance donors and their QTLs. However, MAL0045 is resistant to Ea3049 and Mfu10 is not overcome, but most of the F1 progeny were highly susceptible to this strain. This phenomenon led to the assumption that other putative resistance factors not segregating in the F1 progeny might be present in the genome of MAL0045. Here, we crossed F1 progeny together to obtain 135 F2 individuals. Facilitated by genotyping-by-sequencing and phenotypic assessments, we identified and mapped two novel resistance QTLs in these F2 individuals on LGs 4 and 15, which were not identified in the F1. To our knowledge, these are the first resistance QTLs mapped in F2 progeny in Malus. In addition, we report that neither MAL0045 nor Mfu10 is broken down by a highly aggressive U.S. strain, LA635, after analyses in the original F1 individuals. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Erwinia amylovora , Malus , Humanos , Locos de Características Quantitativas/genética , Malus/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Mapeamento Cromossômico , Genótipo , Erwinia amylovora/genética
4.
Sci Rep ; 13(1): 17876, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857695

RESUMO

Erwinia amylovora is a notorious plant pathogenic bacterium of global concern that has devastated the apple and pear production industry worldwide. Nevertheless, the approaches available currently to understand the genetic diversity of E. amylovora remain unsatisfactory because of the lack of a trustworthy index and data covering the globally occurring E. amylovora strains; thus, their origin and distribution pattern remains ambiguous. Therefore, there is a growing need for robust approaches for obtaining this information via the comparison of the genomic structure of Amygdaloideae-infecting strains to understand their genetic diversity and distribution. Here, the whole-genome sequences of 245 E. amylovora strains available from the NCBI database were compared to identify intraspecific genes for use as an improved index for the simple classification of E. amylovora strains regarding their distribution. Finally, we discovered two kinds of strain-typing protein-encoding genes, i.e., the SAM-dependent methyltransferase and electron transport complex subunit RsxC. Interestingly, both of these proteins carried an amino acid repeat in these strains: SAM-dependent methyltransferase comprised a single-amino-acid repeat (asparagine), whereas RsxC carried a 40-amino-acid repeat, which was differentially distributed among the strains. These noteworthy findings and approaches may enable the exploration of the genetic diversity of E. amylovora from a global perspective.


Assuntos
Erwinia amylovora , Erwinia , Malus , Rosaceae , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Aminoácidos/metabolismo , Rosaceae/microbiologia , Malus/microbiologia , Variação Genética , Metiltransferases/metabolismo , Doenças das Plantas/microbiologia
6.
Phytopathology ; 113(12): 2165-2173, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565835

RESUMO

Isolates of the fire blight pathogen Erwinia amylovora with high-level resistance to oxytetracycline (minimal inhibitory concentration [MIC] > 100 µg/ml) and to streptomycin (MIC > 100 µg/ml) were recovered from four commercial pear orchards in California between 2018 and 2020. The two representative oxytetracycline- and streptomycin-resistant (OxyTcR-SmR) strains 32-10 and 33-1 were as virulent as the antibiotic susceptible strain 13-1 in causing blossom blight of pear and were recovered more than 50% of the time 7 days after co-inoculation to pear flowers with strain 13-1. In the field, inoculation of strain 32-10 to pear flowers that were pretreated with oxytetracycline at 200 µg/ml did not reduce disease compared with an untreated control. Four OxyTcR-SmR strains were subjected to draft genome sequencing to identify the genetic determinants of antibiotic resistance and their location. A 43.6-kb IncX plasmid, designated pX11-7, was detected in each of the four strains, and this plasmid encoded the tetracycline-resistance gene tetB and the streptomycin-resistance gene pair strAB within a large putatively mobile genetic element consisting of the transposon Tn10 that had inserted within the streptomycin-resistance transposon Tn6082. We also determined that pX11-7 was conjugative and was transferred at a rate that was 104 to 105 higher into an E. amylovora strain isolated in California compared with an E. amylovora strain that was isolated in Michigan. The occurrence of high levels of resistance to both oxytetracycline and streptomycin in E. amylovora strains from commercial pear orchards in California significantly limits the options for blossom blight management in these locations.


Assuntos
Erwinia amylovora , Oxitetraciclina , Pyrus , Estreptomicina/farmacologia , Erwinia amylovora/genética , Oxitetraciclina/farmacologia , Doenças das Plantas/prevenção & controle , Plasmídeos/genética , Antibacterianos/farmacologia
7.
Phytopathology ; 113(12): 2152-2164, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37399041

RESUMO

Fire blight, caused by Erwinia amylovora, is a destructive disease of pome fruit trees. In the United States, apple and pear growers rely on applications of copper and antibiotics during bloom to control fire blight, but such methods have already led to regional instances of resistance. In this study, we used transcriptome analyses and field trials to evaluate the effectiveness of three commercially available plant defense elicitors and one plant growth regulator for fire blight management. Our data indicated that foliar applications of acibenzolar-S-methyl (ASM; Actigard 50WG) triggered a strong defense-related response in apple leaves, whereas applications of Bacillus mycoides isolate J (LifeGard WG) or Reynoutria sachalinensis extract (Regalia) did not. Genes upregulated by ASM were enriched in the biological processes associated with plant immunity, such as defense response and protein phosphorylation. The expression of several pathogenesis-related (PR) genes was induced by ASM as well. Surprisingly, many differentially expressed genes in ASM-treated apple leaves overlapped with those induced by treatment with prohexadione-calcium (ProCa; Apogee), a plant growth regulator that suppresses shoot elongation. Further analysis suggested that ProCa likely acts similarly to ASM to stimulate plant immunity because genes involved in plant defense were shared and significantly upregulated (more than twofold) by both treatments. Our field trials agreed with the transcriptome study, demonstrating that ASM and ProCa exhibit the best control performance relative to the other biopesticides. Taken together, these data are pivotal for the understanding of plant response and shed light on future improvements of strategies for fire blight management.


Assuntos
Erwinia amylovora , Malus , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma , Doenças das Plantas/genética , Malus/genética , Frutas , Erwinia amylovora/genética , Erwinia amylovora/metabolismo
8.
Phytopathology ; 113(12): 2187-2196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37287124

RESUMO

Pantoea vagans C9-1 (C9-1) is a biological control bacterium that is applied to apple and pear trees during bloom for suppression of fire blight, caused by Erwinia amylovora. Strain C9-1 has three megaplasmids: pPag1, pPag2, and pPag3. Prior bioinformatic studies predicted these megaplasmids have a role in environmental fitness and/or biocontrol efficacy. Plasmid pPag3 is part of the large Pantoea plasmid (LPP-1) group that is present in all Pantoea spp. and has been hypothesized to contribute to environmental colonization and persistence, while pPag2 is less common. We assessed fitness of C9-1 derivatives cured of pPag2 and/or pPag3 on pear and apple flowers and fruit in experimental orchards. We also assessed the ability of a C9-1 derivative lacking pPag3 to reduce populations of E. amylovora on flowers and disease incidence. Previously, we determined that tolerance to stresses imposed in vitro was compromised in derivatives of C9-1 lacking pPag2 and/or pPag3; however, in this study, the loss of pPag2 and/or pPag3 did not consistently reduce the fitness of C9-1 on flowers in orchards. Over the summer, pPag3 contributed to survival of C9-1 on developing apple and pear fruit in two of five trials, whereas loss of pPag2 did not significantly affect survival of C9-1. We also found that loss of pPag3 did not affect C9-1's ability to reduce E. amylovora populations or fire blight incidence on apple flowers. Our findings partially support prior hypotheses that LPP-1 in Pantoea species contributes to persistence on plant surfaces but questions whether LPP-1 facilitates host colonization.


Assuntos
Erwinia amylovora , Malus , Pantoea , Pyrus , Malus/microbiologia , Frutas , Pantoea/genética , Pyrus/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Plasmídeos , Erwinia amylovora/genética , Flores/microbiologia
9.
Phytopathology ; 113(12): 2197-2204, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37344783

RESUMO

Fire blight, caused by Erwinia amylovora, is an economically important disease in apples and pears worldwide. This pathogen relies on the type III secretion system (T3SS) to cause disease. Compounds that inhibit the function of the T3SS (T3SS inhibitors) have emerged as alternative strategies for bacterial plant disease management, as they block bacterial virulence without affecting growth, unlike traditional antibiotics. In this study, we investigated the mode of action of a T3SS inhibitor named TS108, a plant phenolic acid derivative, in E. amylovora. We showed that adding TS108 to an in vitro culture of E. amylovora repressed the expression of several T3SS regulon genes, including the master regulator gene hrpL. Further studies demonstrated that TS108 negatively regulates CsrB, a global regulatory small RNA, at the posttranscriptional level, resulting in a repression of hrpS, which encodes a key activator of hrpL. Additionally, TS108 has no impact on the expression of T3SS in Dickeya dadantii or Pseudomonas aeruginosa, suggesting that its inhibition of the E. amylovora T3SS is likely species specific. To better evaluate the performance of T3SS inhibitors in fire blight management, we conducted five independent field experiments in four states (Michigan, New York, Oregon, and Connecticut) from 2015 to 2022 and observed reductions in blossom blight incidence as high as 96.7% compared with untreated trees. In summary, the T3SS inhibitors exhibited good efficacy against fire blight.


Assuntos
Erwinia amylovora , Malus , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Antibacterianos/farmacologia , Malus/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Phytopathology ; 113(12): 2174-2186, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36935376

RESUMO

Erwinia amylovora is a relatively homogeneous species with low genetic diversity at the nucleotide level. However, phenotypic differences and genomic structural variations among E. amylovora strains have been documented. In this study, we identified 10 large chromosomal inversion (LCI) types in the Spiraeoideae-infecting (SI) E. amylovora strains by combining whole genome sequencing and PCR-based molecular markers. It was found that LCIs were mainly caused by homologous recombination events among seven rRNA operons (rrns) in SI E. amylovora strains. Although ribotyping results identified inter- and intra-variations in the internal transcribed spacer (ITS1 and ITS2) regions among rrns, LCIs tend to occur between rrns transcribed in the opposite directions and with the same tRNA content (tRNA-Glu or tRNA-Ile/Ala) in ITS1. Based on the LCI types, physical/estimated replichore imbalance (PRI/ERI) was examined and calculated. Among the 117 SI strains evaluated, the LCI types of Ea1189, CFBP1430, and Ea273 were the most common, with ERI values at 1.31, 7.87, and 4.47°, respectively. These three LCI types had worldwide distribution, whereas the remaining seven LCI types were restricted to North America (or certain regions of the United States). Our results indicated ongoing chromosomal recombination events in the SI E. amylovora population and showed that LCI events are mostly symmetrical, keeping the ERI less than 15°. These findings provide initial evidence about the prevalence of certain LCI types in E. amylovora strains, how LCI occurs, and its potential evolutionary advantage and history, which might help track the movement of the pathogen.


Assuntos
Erwinia amylovora , Erwinia , Rosaceae , Erwinia amylovora/genética , Inversão Cromossômica/genética , Doenças das Plantas , RNA de Transferência , Erwinia/genética
11.
Virus Res ; 329: 199088, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907559

RESUMO

In this study, the genome of the lytic broad-host-range phage Key infecting Erwinia amylovora, Erwinia horticola, and Pantoea agglomerans strains was characterized. Key phage has a 115,651 bp long double-stranded DNA genome with the G + C ratio of 39.03%, encoding 182 proteins and 27 tRNA genes. The majority (69%) of predicted coding sequences (CDSs) encode proteins with unknown functions. The protein products of 57 annotated genes were found to have probable functions in nucleotide metabolism, DNA replication, recombination, repair, and packaging, virion morphogenesis, phage-host interaction and lysis. Furthermore, the product of gene 141 shared amino acid sequence similarity and conserved domain architecture with the exopolysaccharide (EPS) degrading proteins of Erwinia and Pantoea infecting phages as well as bacterial EPS biosynthesis proteins. Due to the genome synteny and similarity to the proteins of T5-related phages, phage Key, together with its closest relative, Pantoea phage AAS21, was suggested to represent a novel genus within the Demerecviridae family, for which we tentatively propose the name "Keyvirus".


Assuntos
Bacteriófagos , Erwinia amylovora , Bacteriófagos/genética , Erwinia amylovora/genética , Especificidade de Hospedeiro , Vírion/genética , Genoma Viral
12.
Plant Dis ; 107(3): 624-627, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35900343

RESUMO

Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a highly destructive disease of apple and pear. Because the apple tree gets systemically infected with E. amylovora and eventually dies, E. amylovora is a considerably important pathogen in the orchard that requires long-term management. In addition, it is crucial to prevent the spread of the pathogen by expeditious diagnosis. In this study, via comparative approaches to the genome sequences of the strains of various Erwinia spp., we designed specific primers targeting a hypothetical gene that is single copy and located in the chromosomal DNA of E. amylovora. This primer set specifically amplified the DNA of E. amylovora but no other bacteria, including E. pyrifoliae, Pectobacterium spp., Pantoea spp., and Dickeya chrysanthemi. Furthermore, the SYBR Green-based real-time PCR using the primer set allowed accurate estimation of the population of E. amylovora. Developing a rapid and accurate diagnostic method using the novel primer set enables effective defense against pathogen spread through continuous monitoring and quick response.


Assuntos
Erwinia amylovora , Malus , Pyrus , Erwinia amylovora/genética , Reação em Cadeia da Polimerase em Tempo Real , Malus/microbiologia , Pyrus/microbiologia
13.
Phytopathology ; 113(2): 183-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35994732

RESUMO

Erwinia amylovora causes a devastating fire blight disease in apples and pears. One of the main virulence determinants in E. amylovora is the hypersensitive response (HR) and pathogenicity (hrp)-type III secretion system (T3SS), which is activated by the RpoN-HrpL sigma factor cascade. However, the RpoN regulon in E. amylovora has not been investigated. In this study, we determined the RpoN regulon in E. amylovora by combining RNA-seq transcriptomic analysis with in silico binding site analysis. RNA-seq revealed that 262 genes, approximately 7.5% genes in the genome of E. amylovora, were differentially transcribed in the rpoN mutant as compared with the wild type. Specifically, genes associated with virulence, motility, nitrogen assimilation, the PspF system, stress response, and arginine biosynthesis are positively regulated by RpoN, whereas genes associated with biosynthesis of amino acids and sorbitol transport are negatively regulated by RpoN. In silico binding site analysis identified 46 potential target genes with a putative RpoN binding site, and the upstream sequences of six, three, and three genes also contain putative GlnG, PspF, and YfhA binding sites, respectively. Overall, RpoN directly regulates genes associated with virulence, nitrogen assimilation, the PspF system, motility and the YfhA/YfhK two-component regulatory system.


Assuntos
Proteínas de Bactérias , Erwinia amylovora , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Regulon/genética , Doenças das Plantas , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica
14.
J Agric Food Chem ; 71(1): 680-689, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36538710

RESUMO

Levansucrase (LS, EC 2.4.1.10) catalyzes the synthesis of levan by successively transferring the fructosyl moiety from sucrose to an elongated fructan chain. Although the product distribution of LS from Erwinia amylovora (Ea-LS) was studied under different sucrose concentrations, the effect of residues on the product formation is yet unknown. The first levanhexaose-complexed structure of LS from Bacillus subtilis (Bs-SacB) provided information on the oligosaccharide binding sites (OB sites), from +1 to +4 subsites. Since Ea-LS would efficiently produce fructooligosaccharides, a substitution mutation of OB sites in Bs-SacB and the corresponding residues of Ea-LS were conducted to investigate how these mutants would influence the product distribution. As a result, a series of mutants with different product spectrum were obtained. Notably, the mutants of G98E, V151F, and N200T around loop 1, loop 3, and loop 4 all showed a significant increase in both the molecular mass and the yield of high-molecular-mass levan, suggesting that the product profile of Ea-LS was significantly modified.


Assuntos
Erwinia amylovora , Hexosiltransferases , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Sacarose/metabolismo , Hexosiltransferases/química , Frutanos/metabolismo
15.
Biosensors (Basel) ; 12(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551141

RESUMO

Isothermal amplifications allow for the highly sensitive detection of nucleic acids, bypassing the use of instrumental thermal cycling. This work aimed to carry out an experimental comparison of the four most promising techniques: recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) coupled with lateral flow test or coupled with additional amplification based on CRISPR/Cas12a resulting from the fluorescence of the Cas12a-cleaved probe. To compare the four amplification techniques, we chose the bacterial phytopathogen Erwinia amylovora (causative agent of fire blight), which has a quarantine significance in many countries and possesses a serious threat to agriculture. Three genes were chosen as the targets and primers were selected for each one (two for RPA and six for LAMP). They were functionalized by labels (biotin, fluorescein) at the 5' ends for amplicons recognition by LFT. As a result, we developed LAMP-LFT, LAMP-CRISPR/Cas, RPA-LFT, and RPA-CRISPR/Cas for E. amylovora detection. The detection limit was 104 CFU/mL for LAMP-LFT, 103 CFU/mL for LAMP-CRISPR/Cas, and 102 CFU/mL for RPA-LFT and RPA-CRISPR/Cas. The results of four developed test systems were verified by qPCR on a panel of real samples. The developed assays based on RPA, LAMP, CRISPR/Cas12a, and LFT are rapid (30-55 min), user-friendly, and highly sensitive for E. amylovora detection. All proposed detection methods can be applied to fire blight diagnosis and effective management of this disease.


Assuntos
Erwinia amylovora , Ácidos Nucleicos , Sensibilidade e Especificidade , Erwinia amylovora/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Primers do DNA/genética
16.
Viruses ; 14(11)2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36366553

RESUMO

Erwinia amylovora is a quarantine phytopathogenic bacterium that is the causal agent of fire blight, a destructive disease responsible for killing millions of fruit-bearing plants worldwide, including apple, pear, quince, and raspberry. Efficient and sustainable control strategies for this serious bacterial disease are still lacking, and traditional methods are limited to the use of antibiotics and some basic agricultural practices. This study aimed to contribute to the development of a sustainable control strategy through the identification, characterization, and application of bacteriophages (phages) able to control fire blight on pears. Phages isolated from wastewater collected in the Apulia region (southern Italy) were characterized and evaluated as antibacterial agents to treat experimental fire blight caused by E. amylovora. Transmission electron microscopy (TEM) conducted on purified phages (named EP-IT22 for Erwinia phage IT22) showed particles with icosahedral heads of ca. 90 ± 5 nm in length and long contractile tails of 100 ± 10 nm, typical of the Myoviridae family. Whole genome sequencing (WGS), assembly, and analysis of the phage DNA generated a single contig of 174.346 bp representing a complete circular genome composed of 310 open reading frames (ORFs). EP-IT22 was found to be 98.48% identical to the Straboviridae Erwinia phage Cronus (EPC) (GenBank Acc. n° NC_055743) at the nucleotide level. EP-IT22 was found to be resistant to high temperatures (up to 60 °C) and pH values between 4 and 11, and was able to accomplish a complete lytic cycle within one hour. Furthermore, the viability-qPCR and turbidity assays showed that EP-IT22 (MOI = 1) lysed 94% of E. amylovora cells in 20 h. The antibacterial activity of EP-IT22 in planta was evaluated in E. amylovora-inoculated pear plants that remained asymptomatic 40 days post inoculation, similarly to those treated with streptomycin sulphate. This is the first description of the morphological, biological, and molecular features of EP-IT22, highlighting its promising potential for biocontrol of E. amylovora against fire blight disease.


Assuntos
Bacteriófagos , Erwinia amylovora , Malus , Erwinia amylovora/genética , Bacteriófagos/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Myoviridae/genética
17.
Arch Virol ; 167(12): 2633-2642, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36207555

RESUMO

The complete genomes of the new Erwinia amylovora bacteriophages Loshitsa2 and Micant are 43,092 bp and 43,028 bp long, respectively, encode 51 putative proteins, and have two tRNA genes. Comparative analysis with representatives of the class Caudoviricetes suggests that bacteriophages Loshitsa2 and Micant are related to LIMElight bacteriophage belonging to the family Autographiviridae and could be proposed to be members of a novel subfamily.


Assuntos
Bacteriófagos , Erwinia amylovora , Erwinia amylovora/genética , Bacteriófagos/genética , Doenças das Plantas
18.
Environ Microbiol ; 24(10): 4738-4754, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054324

RESUMO

Erwinia amylovora, the causative agent of fire blight, uses flagella-based motilities to translocate to host plant natural openings; however, little is known about how this bacterium migrates systemically in the apoplast. Here, we reveal a novel surface motility mechanism, defined as sliding, in E. amylovora. Deletion of flagella assembly genes did not affect this movement, whereas deletion of biosynthesis genes for the exopolysaccharides (EPSs) amylovoran and levan resulted in non-sliding phenotypes. Since EPS production generates osmotic pressure that potentially powers sliding, we validated this mechanism by demonstrating that water potential positively contributes to sliding. In addition, no sliding was observed when the water potential of the surface was lower than -0.5 MPa. Sliding is a passive motility mechanism. We further show that the force of gravity plays a critical role in directing E. amylovora sliding on unconfined surfaces but has a negligible effect when cells are sliding in confined microcapillaries, in which EPS-dependent osmotic pressure acts as the main force. Although amylovoran and levan are both required for sliding, we demonstrate that they exhibit different roles in bacterial communities. In summary, our study provides fundamental knowledge for a better understanding of mechanisms that drive bacterial sliding motility.


Assuntos
Erwinia amylovora , Proteínas de Bactérias/genética , Erwinia amylovora/genética , Frutanos , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos , Virulência , Água
19.
PLoS Pathog ; 18(8): e1010737, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914003

RESUMO

Cyclic-di-GMP (c-di-GMP) is an essential bacterial second messenger that regulates biofilm formation and pathogenicity. To study the global regulatory effect of individual components of the c-di-GMP metabolic system, we deleted all 12 diguanylate cyclase (dgc) and phosphodiesterase (pde)-encoding genes in E. amylovora Ea1189 (Ea1189Δ12). Ea1189Δ12 was impaired in surface attachment due to a transcriptional dysregulation of the type IV pilus and the flagellar filament. A transcriptomic analysis of surface-exposed WT Ea1189 and Ea1189Δ12 cells indicated that genes involved in metabolism, appendage generation and global transcriptional/post-transcriptional regulation were differentially regulated in Ea1189Δ12. Biofilm formation was regulated by all 5 Dgcs, whereas type III secretion and disease development were differentially regulated by specific Dgcs. A comparative transcriptomic analysis of Ea1189Δ8 (lacks all five enzymatically active dgc and 3 pde genes) against Ea1189Δ8 expressing specific dgcs, revealed the presence of a dual modality of spatial and global regulatory frameworks in the c-di-GMP signaling network.


Assuntos
Erwinia amylovora , Proteínas de Escherichia coli , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , GMP Cíclico/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo
20.
PeerJ ; 10: e13695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891645

RESUMO

Background: Fire blight is a destructive disease of pome trees, caused by Erwinia amylovora, leading to high losses of chain-of-values fruits. Major outbreaks were registered between 2010 and 2017 in Portugal, and the first molecular epidemiological characterization of those isolates disclosed a clonal population with different levels of virulence and susceptibility to antimicrobial peptides. Methods: This work aimed to further disclose the genetic characterization and unveil the phenotypic diversity of this E. amylovora population, resorting to MLSA, growth kinetics, biochemical characterization, and antibiotic susceptibility. Results: While MLSA further confirmed the genetic clonality of those isolates, several phenotypic differences were recorded regarding their growth, carbon sources preferences, and chemical susceptibility to several antibiotics, disclosing a heterogeneous population. Principal component analysis regarding the phenotypic traits allows to separate the strains Ea 630 and Ea 680 from the remaining. Discussion: Regardless the genetic clonality of these E. amylovora strains isolated from fire blight outbreaks, the phenotypic characterization evidenced a population diversity beyond the genotype clonality inferred by MLSA and CRISPR, suggesting that distinct sources or environmental adaptations of this pathogen may have occurred. Conclusion: Attending the characteristic clonality of E. amylovora species, the data gathered here emphasizes the importance of phenotypic assessment of E. amylovora isolates to better understand their epidemiological behavior, namely by improving source tracking, make risk assessment analysis, and determine strain-specific environmental adaptations, that might ultimately lead to prevent new outbreaks.


Assuntos
Erwinia amylovora , Erwinia amylovora/genética , Frutas , Antibacterianos , Virulência/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...